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Part I

Rear-View Mirror
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Stan 2.18 Released

• Math, Stan, CmdStan 2.18 currently

• RStan and PyStan 2.18 out soon

• Stan 2.19 to follow soon after
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Multi-core Processing has Landed!

• Not just parallel chains

• Distribute log density and gradient calculations over

– multiple cores on a single machine using C++11 threading

– multiple cores on a single machine or cluster using MPI

– also runs sequentially with memory-locality savings

• Nearly embarassingly parallel

– In representative experiments, 100 cores ran 80+ times
faster than a single core with MPI on a standard cluser
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Multi-Process Parallelism

• Implemented with the message passing interface (MPI)

• Runs cross-platform with standards-compliant MPI

– tested on Linux and Mac OS X

– based on a generalized higher-order map function, e.g.,

map(f )(x1, . . . , xN) = (f (x1), . . . , f (xN))

– applies f to each element of a sequence (x1, . . . , xN )

• pushes data arguments to processors once

• pushes arguments to processors per eval (map)

• synchronizes reassembly in root expression graph (reduce)
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Map Function

• The mapped function has signature

vector f(vector, vector, data real[], data int[])

• The higher-order map function has signature

vector map_rect(F f, vector phi, vector[] theta,
data real[, ] x_r, data int[, ] x_i)

• The result is computed as follows

map_rect(f, phi, theta, x_r, x_i)

= append_col(f(phi, theta[1], x_r[1], x_i[1]),
...,
f(phi, theta[N], x_r[N], x_i[N]))
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New Built-in Functions

• multivariate normal RNG and Cholesky normal RNG

• many RNGs now vectorized (the rest to come soon)

• thin QR decomposition

• matrix-exponential multiply action plus scaled version

• Adams ODE integrator

• generalize log mixture function beyond two arguments

• standard normal distribution

• vectorized ordered probit and logistic
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Manuals to HTML

• Breaking 2.17 manual into three parts:

– Stan Reference Manual: specification of the language and
algorithms

– Stan Functions Reference Manual: specification of built-in
functions

– Stan User’s Guide: programming techniques and example
model

• Reference manual in bookdown for HTML and pdf

– user’s guide, function manual HTML soon

• Expand User’s Guide to reproducible Stan Book
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Improved Effective Sample Size

• Aki Vehtari has been working on better calibration

• NUTS can produce anti-correlated draws

– effective sample size may exceed number of iterations!

• pushed to CmdStan, RStan, and PyStan
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Foreach Loops
• Loop over elements of container rather than numbers

• Works for any array type, looping over elements

• Also works for vector and matrix types

matrix[3, 4] ys[7];
for (matrix y : ys) {

... do something with y...
}

replaces

for (i in 1:7) {
matrix[3, 4] y = ys[i];
... do something with y ...

}
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Data-qualified Arguments

• Allow data qualifier on function arguments

• Requires argument to be data-only expression

• User-defined functions w. algebraic solver, ODEs, map-
reduce, etc.

• For example, to parallelize logistic regression, define

real logistic_glm(vector beta, vector dummy,
data real[] x_r, data int[] y) {

return bernoulli_logit_lpmf(y | to_matrix(x_r) * beta);
}
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Bug Fixes and Enhancements

• Lots of little things in the parser

– better parser error messages

– fixed compound arithmetic/assignment and ternary opera-
tor syntax edge cases

• Allow initializatioin to continue through constraint viola-
tion in transformed parameters

• Exceptions/rejections in generated quantities produce all
not-a-number values rather than failure
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Math Library Enhancements

• In 2.18 math lib, scheduled for Stan 2.19

• Covariance functions

– squared exponential

– dot product

– periodic

• Definite integrator (one dimensional)

• Add-diagonal and log-inverse-logit-difference functions

• GLM primitives for Bernoulli-logit and Poisson-log

• Vectorized ordered logit and probit
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CmdStan Enhancements

• Allow Euclidean metric (inverse mass matrix) specification

• Precompiled header support for faster compilation

– C++ compilers are getting slower with more optimizations
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Part II

The Road in Front
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GPU Support

• OpenCL for double-precision arithmetic & portability

– may also eventually include a CUDA interface

• Initial rollout in Stan 2.19 for

– matrix-matrix multiply (N3 data, N2 computation)

– Cholesky factorization (N3 data, N2 computation)

– matrix-vector multiply (N2 data, N2 computation)

• Order of magnitude speedup without loss of precision for
large problems

– Gaussian processes, factor models, etc.
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GPU Speedup, Cholesky (40+ times)
• Time to solve for L for positive-definite Σ = LL>
• with an affordable GPU and Linux desktop
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PDEs, DAEs & Definite Integrals

• Partial differential equation (PDE) solver framework

– common framework for pluggable solvers

– problem-specific solvers for PDEs

• Differential algebraic equation (DAE) solver

– extends the existing algorithmic solver

– differential implicit functions

• Definite integral solver

– Density normalization inside language
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Tuples (i.e., Product Types)

• Hold sequences of heterogeneous types

• Like typed, unnamed R lists or Python dictionaries

tuple<matrix, vector> eigen_decompose(matrix x);

matrix z;
tuple<matrix, vector> ed = eigen_decompose(z);

// accessors
matrix z_eigenvecs = ed.1;
vector z_eigenvals = ed.2;

// constructors
tuple<matrix, vector> ed2 = (ed.1, ed.2);
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Ragged Arrays

• Arrays where

– all elements are the same shape (e.g., ‘real[,]‘)

– not all elements are the same size

• Critical for a range of applications

• Declared with array of sizes

int<lower = 0> M; // rows
int<lower = 0> N[M]; // cols for row
real[N] y; // y has M rows; row m has N[m] cols
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Lambdas and Function Types

• Define anonymous inline functions (may be assigned, passed)

• Define higher-order functions

• Closures capture variables (static, lexical scope)

– no more data arguments to ODE system functions

• Transpile directly to C++ closures

• Example uses manual function syntax

int n = 3;
(real):real cube = (real x).x^n; // binds n
real x = 2.5;
real x_cubed = cube(x); // x_cubed == 15.625
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Independent Generated Quants

• Stored posterior sample with new generated quantities

– parameter declarations must match

– model block is ignored

– generated quantities may vary

• Provides flexible posterior predictive inference

– e.g., allows streaming posterior predictions for new items

– e.g., decouples decision theory from posterior generation

– e.g., allows exploratory posterior predicive checks

• Already built into C++ core; needs pull from interfaces
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Adjoint-Jacobian Product Functor

• Efficient matrix autodiff without fiddling code/memory

– supports direct matrix derivative code

– reduces reverse pass to single virtual function call

– lazy adjoint-Jacobian product avoids storing Jacobian

– store state during functor operator() call

– multiply-adjoint-Jacobian may be called multiple times

struct my_vector_fun {
VectorXd operator()(const VectorXd& x) { ... }

VectorXd multiply_adjoint_jacobian(const VectorXd& fx_adj)
const { ... }

};

23



Mass Matrix/Step Size Init

• User may provide mass matrix (inverse Euclidean metric)

– may already provide step size (temporal discretization)

• Allows metric initialization with known parameter scales

• Allows restart after adaptation or with more adaptation

– requires save of RNG state for exact match

• Already built into C++ core; needs pull from interfaces
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Part III

The Longer Road
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Faster Compile Times

• Key is replacing model template with base class

– Stan program translated to a specific C++ class

– algorithms and service functions templated for class

– math library primarily header only

– so everything recompiles for each Stan program

– model base class eliminates most recompilation

• And precompiling as much of math library as possible

– vectorized operations combinatorially prohibitive
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Blockless Stan Language

• No required block declarations

– optional qualification for backward compatibility

– infer block structure for rest

– allow missing data a la BUGS (continuous only)

– allow modules with parameters, e.g., non-centered prior

– retain imperative execution order, functions, etc.

• Inspired by composability in language theory

• Inspired by & partially realized by transpilers

– StataStan: CiBO Technologies, open source

– SlicStan: Maria Gorinova’s M.S. thesis
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Blockless Linear Regression

real alpha ~ normal(0, 4); // param
real beta ~ normal(0, 4); // param
int<lower = 0> N; // data (unmodeled)
vector[N] x; // data (unmodeled)
vector[N] mu_y = alpha + beta * x; // trans param
real<lower = 0> sigma_y ~ normal(0, 2); // param
vector[N] y ~ normal(mu_y, sigma_y); // data (modeled)

• Allow model in generative order (parameters to data)

• Variable use moves closer to declarations
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Non-Centered Normal Module

• Declare module for non-centered normal prior

• Parameters and transformed parameters in module

module non_ctr_normal(int N, real mu, real sigma) {
vector[N] alpha_std ~ normal(0, 1); // param
vector[N] alpha = mu + sigma * alpha_std; // trans param

}
real mu_alpha ~ normal(0, 5); // param
real<lower = 0> sigma_alpha ~ normal(0, 5); // param
int <lower = 1> K; // data
module ncn = non_ctr_normal(K, mu_alpha, sigma_alpha);
int<lower = 0> N; // data
int<lower = 1, upper = K> ii[N]; // data
vector[n] y ~ normal(ncn.alpha[ii] + beta * x, tau); // data
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Protocol Buffer I/O

• Protobuf is a standardized, widely supported

• Efficient binary representation

• Originally developed by Google

• Schema driven

– efficient binary output formats without extraneous meta-
data

• Will replace the current hacked R dump format for input

• Probably replacing numerical outputs

• Auto-convertible to/from human-readable JSON
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Logging Standards

• Add logger for console-type output

• Allow finer control of verbosity through interfaces

– DEBUG (?): information to help developers

– INFO: regular output reminders

– WARN: warnings

– ERROR: errors

– FATAL: fatal errors

• Configurable static logger eases algorithm dev
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Program Transformations

• For optimization

– reducing common subexpressions

– eliminate dead code

– transform block location

– auto-vectorize

• For arithmetic stability

– log-scale and special functions

• Transform intermediate abstract syntax tree

– refactor from C++ variant types to S-expressions
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Questions?

Suggestions?
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